1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
// Copyright 2018 The Exonum Team // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. //! Password-based encryption and decryption for Rust. //! //! # Overview //! //! This crate provides the container for password-based encryption, [`PwBox`], //! which can be composed of [key derivation] and authenticated symmetric [`Cipher`] cryptographic //! primitives. In turn, authenticated symmetric ciphers can be composed from an //! [`UnauthenticatedCipher`] and a message authentication code ([`Mac`]). //! The crate provides several pluggable cryptographic [`Suite`]s with these primitives: //! //! - [`Sodium`] //! - [`RustCrypto`] (provides compatibility with Ethereum keystore; see its docs for more //! details) //! - [`PureCrypto`] (pure Rust implementation; good for comiling into WASM //! or for other constrained environments). //! //! There is also [`Eraser`], which allows to (de)serialize [`PwBox`]es from any `serde`-compatible //! format, such as JSON or TOML. //! //! [key derivation]: DeriveKey //! [`Sodium`]: sodium::Sodium //! [`RustCrypto`]: rcrypto::RustCrypto //! [`PureCrypto`]: pure::PureCrypto //! //! # Naming //! //! `PwBox` name was produced by combining two libsodium names: `pwhash` for password-based KDFs //! and `*box` for ciphers. //! //! # Crate Features //! //! - `std` (enabled by default): Enables types from the Rust standard library. Switching //! this feature off can be used for constrained environments, such as WASM. Note that //! the crate still requires an allocator (that is, the `alloc` crate) even //! if the `std` feature is disabled. //! - `exonum_sodiumoxide` (enabled by default), `rust-crypto`, `pure` (both disabled by default): //! Provide the cryptographic backends described above. //! //! # Examples //! //! Using the `Sodium` cryptosuite: //! //! ``` //! # use anyhow::Error; //! use rand::thread_rng; //! use pwbox::{Eraser, ErasedPwBox, Suite, sodium::Sodium}; //! # use pwbox::sodium::Scrypt; //! //! # fn main() -> Result<(), Error> { //! // Create a new box. //! let pwbox = Sodium::build_box(&mut thread_rng()) //! # .kdf(Scrypt::light()) //! .seal(b"correct horse", b"battery staple")?; //! //! // Serialize box. //! let mut eraser = Eraser::new(); //! eraser.add_suite::<Sodium>(); //! let erased: ErasedPwBox = eraser.erase(&pwbox)?; //! println!("{}", serde_json::to_string_pretty(&erased)?); //! // Deserialize box back. //! let plaintext = eraser.restore(&erased)?.open(b"correct horse")?; //! assert_eq!(&*plaintext, b"battery staple"); //! # Ok(()) //! # } //! ``` #![cfg_attr(not(feature = "std"), no_std)] #![cfg_attr(docsrs, feature(doc_cfg))] #![doc(html_root_url = "https://docs.rs/pwbox/0.4.0")] #![warn(missing_docs, missing_debug_implementations)] #![warn(clippy::all, clippy::pedantic)] #![allow( clippy::missing_errors_doc, clippy::must_use_candidate, clippy::module_name_repetitions, clippy::doc_markdown )] use rand_core::{CryptoRng, RngCore}; use serde_json::Error as JsonError; use core::{fmt, marker::PhantomData}; mod cipher_with_mac; mod erased; mod traits; mod utils; // Polyfill for `alloc` types. mod alloc { #[cfg(not(feature = "std"))] extern crate alloc; #[cfg(not(feature = "std"))] pub use alloc::{ borrow::ToOwned, boxed::Box, collections::BTreeMap, string::String, vec, vec::Vec, }; #[cfg(feature = "std")] pub use std::{ borrow::ToOwned, boxed::Box, collections::BTreeMap, string::String, vec, vec::Vec, }; } // Crypto backends. #[cfg(feature = "pure")] #[cfg_attr(docsrs, doc(cfg(feature = "pure")))] pub mod pure; #[cfg(feature = "rust-crypto")] #[cfg_attr(docsrs, doc(cfg(feature = "rust-crypto")))] pub mod rcrypto; #[cfg(feature = "exonum_sodiumoxide")] #[cfg_attr(docsrs, doc(cfg(feature = "exonum_sodiumoxide")))] pub mod sodium; pub use crate::{ cipher_with_mac::{CipherWithMac, Mac, UnauthenticatedCipher}, erased::{EraseError, ErasedPwBox, Eraser, Suite}, traits::{Cipher, CipherOutput, DeriveKey, MacMismatch}, utils::{ScryptParams, SensitiveData}, }; use crate::{ alloc::{Box, String, Vec}, traits::{CipherObject, ObjectSafeCipher}, }; /// Errors occurring during `PwBox` operations. #[derive(Debug)] pub enum Error { /// A cipher with the specified name is not registered. /// /// # Troubleshooting /// /// Register the cipher with the help of [`Eraser::add_cipher()`] /// or [`Eraser::add_suite()`] methods. NoCipher(String), /// A key derivation function with the specified name is not registered. /// /// # Troubleshooting /// /// Register the cipher with the help of [`Eraser::add_kdf()`] /// or [`Eraser::add_suite()`] methods. NoKdf(String), /// Failed to parse KDF parameters. KdfParams(JsonError), /// Incorrect nonce length encountered. /// /// This error usually means that the box is corrupted. NonceLen, /// Incorrect MAC length encountered. /// /// This error usually means that the box is corrupted. MacLen, /// Incorrect salt length encountered. /// /// This error usually means that the box is corrupted. SaltLen, /// Failed to verify MAC code. /// /// This error means that either the supplied password is incorrect, /// or the box is corrupted. MacMismatch, /// Error during KDF invocation. /// /// This error can arise if the KDF was supplied with invalid parameters, /// which may lead or have led to a KDF-specific error (e.g., out-of-memory). DeriveKey(anyhow::Error), } impl From<MacMismatch> for Error { fn from(_: MacMismatch) -> Self { Self::MacMismatch } } impl fmt::Display for Error { fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result { match self { Error::NoCipher(cipher) => write!(formatter, "unknown cipher: {}", cipher), Error::NoKdf(kdf) => write!(formatter, "unknown KDF: {}", kdf), Error::KdfParams(e) => write!(formatter, "failed to parse KDF parameters: {}", e), Error::NonceLen => formatter.write_str("incorrect nonce length"), Error::MacLen => formatter.write_str("incorrect MAC length"), Error::SaltLen => formatter.write_str("incorrect salt length"), Error::MacMismatch => formatter.write_str("incorrect password or corrupted box"), Error::DeriveKey(e) => write!(formatter, "error during key derivation: {}", e), } } } #[cfg(feature = "std")] impl std::error::Error for Error { fn source(&self) -> Option<&(dyn std::error::Error + 'static)> { match self { Error::KdfParams(e) => Some(e), Error::DeriveKey(e) => Some(e.as_ref()), _ => None, } } } /// The core cryptographic object of the library: a box containing randomly generated `salt` /// and cipher `nonce`, as well as the ciphertext and the KDF / cipher info. /// /// Reused within `PwBox` and `RestoredPwBox`. #[derive(Debug)] struct PwBoxInner<K, C> { salt: Vec<u8>, nonce: Vec<u8>, encrypted: CipherOutput, kdf: K, cipher: C, } impl<K: DeriveKey, C: ObjectSafeCipher> PwBoxInner<K, C> { fn seal<R: RngCore + ?Sized>( kdf: K, cipher: C, rng: &mut R, password: impl AsRef<[u8]>, message: impl AsRef<[u8]>, ) -> anyhow::Result<Self> { // Create salt and nonce from RNG. let mut salt = SensitiveData::zeros(kdf.salt_len()); rng.fill_bytes(salt.bytes_mut()); let mut nonce = SensitiveData::zeros(cipher.nonce_len()); rng.fill_bytes(nonce.bytes_mut()); // Derive key from password and salt. let mut key = SensitiveData::zeros(cipher.key_len()); kdf.derive_key(key.bytes_mut(), password.as_ref(), &*salt)?; let encrypted = cipher.seal(message.as_ref(), &*nonce, &*key); Ok(PwBoxInner { salt: salt[..].to_vec(), nonce: nonce[..].to_vec(), encrypted, kdf, cipher, }) } fn len(&self) -> usize { self.encrypted.ciphertext.len() } fn open_into( &self, mut output: impl AsMut<[u8]>, password: impl AsRef<[u8]>, ) -> Result<(), Error> { assert_eq!( output.as_mut().len(), self.len(), "please check `PwBox::len()` and provide output of fitting size" ); let key_len = self.cipher.key_len(); // Derive key from password and salt. let mut key = SensitiveData::zeros(key_len); self.kdf .derive_key(key.bytes_mut(), password.as_ref(), &self.salt) .map_err(Error::DeriveKey)?; self.cipher .open(output.as_mut(), &self.encrypted, &self.nonce, &*key) .map_err(From::from) } fn open(&self, password: impl AsRef<[u8]>) -> Result<SensitiveData, Error> { let mut output = SensitiveData::zeros(self.len()); self.open_into(output.bytes_mut(), password) .map(|()| output) } } /// Password-encrypted data. /// /// # See also /// /// See the crate docs for an example of usage. See [`ErasedPwBox`] for serialization details. #[derive(Debug)] pub struct PwBox<K, C> { inner: PwBoxInner<K, CipherObject<C>>, } impl<K: DeriveKey + Default, C: Cipher> PwBox<K, C> { /// Creates a new box by using default settings of the supplied KDF. pub fn new<R: RngCore + CryptoRng>( rng: &mut R, password: impl AsRef<[u8]>, message: impl AsRef<[u8]>, ) -> anyhow::Result<Self> { let (kdf, cipher) = (K::default(), CipherObject::default()); PwBoxInner::seal(kdf, cipher, rng, password, message).map(|inner| PwBox { inner }) } } // `is_empty()` method wouldn't make much sense; in *all* valid use cases, `len() > 0`. #[allow(clippy::len_without_is_empty)] impl<K: DeriveKey, C: Cipher> PwBox<K, C> { /// Returns the byte size of the encrypted data stored in this box. pub fn len(&self) -> usize { self.inner.len() } /// Decrypts the box into the specified container. /// /// This method should be preferred to `open()` if the `output` type implements /// zeroing on drop (e.g., cryptographic secrets from `sodiumoxide`). pub fn open_into( &self, output: impl AsMut<[u8]>, password: impl AsRef<[u8]>, ) -> Result<(), Error> { self.inner.open_into(output, password) } /// Decrypts the box and returns its contents. The returned container is zeroed on drop /// and derefs to a byte slice. pub fn open(&self, password: impl AsRef<[u8]>) -> Result<SensitiveData, Error> { self.inner.open(password) } } /// Password-encrypted box restored after deserialization. /// /// If the box may be corrupted, it may make sense to check its length /// with the [`Self::len()`] method before `open`ing the box. pub struct RestoredPwBox { inner: PwBoxInner<Box<dyn DeriveKey>, Box<dyn ObjectSafeCipher>>, } impl fmt::Debug for RestoredPwBox { fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result { formatter.debug_struct("RestoredPwBox").finish() } } // `is_empty()` method wouldn't make much sense; in *all* valid use cases, `len() > 0`. #[allow(clippy::len_without_is_empty)] impl RestoredPwBox { /// Returns the byte size of the encrypted data stored in this box. pub fn len(&self) -> usize { self.inner.len() } /// Decrypts the box into the specified container. /// /// This method should be preferred to `open()` if the `output` type implements /// zeroing on drop (e.g., cryptographic secrets from `sodiumoxide`). pub fn open_into( &self, output: impl AsMut<[u8]>, password: impl AsRef<[u8]>, ) -> Result<(), Error> { self.inner.open_into(output, password) } /// Decrypts the box and returns its contents. The returned container is zeroed on drop /// and derefs to a byte slice. pub fn open(&self, password: impl AsRef<[u8]>) -> Result<SensitiveData, Error> { self.inner.open(password) } } /// Builder for `PwBox`es. pub struct PwBoxBuilder<'a, K, C> { kdf: Option<K>, rng: &'a mut dyn RngCore, _cipher: PhantomData<C>, } impl<'a, K, C> fmt::Debug for PwBoxBuilder<'a, K, C> { fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result { formatter .debug_struct("PwBoxBuilder") .field("custom_kdf", &self.kdf.is_some()) .finish() } } impl<'a, K, C> PwBoxBuilder<'a, K, C> where K: DeriveKey + Clone + Default, C: Cipher, { /// Initializes the builder with a random number generator. pub fn new<R: RngCore + CryptoRng>(rng: &'a mut R) -> Self { PwBoxBuilder { kdf: None, rng, _cipher: PhantomData, } } /// Sets up a custom KDF. pub fn kdf(&mut self, kdf: K) -> &mut Self { self.kdf = Some(kdf); self } /// Creates a new `PwBox` with the specified password and contents. pub fn seal( &mut self, password: impl AsRef<[u8]>, data: impl AsRef<[u8]>, ) -> anyhow::Result<PwBox<K, C>> { let cipher = CipherObject::<C>::default(); let kdf = self.kdf.clone().unwrap_or_default(); PwBoxInner::seal(kdf, cipher, self.rng, password, data).map(|inner| PwBox { inner }) } } // This function is used in testing cryptographic backends, so it's intentionally kept public. #[cfg(test)] #[doc(hidden)] pub fn test_kdf_and_cipher<K, C>(kdf: K) where K: DeriveKey + Clone + Default, C: Cipher, { use alloc::vec; use rand::thread_rng; const PASSWORD: &str = "correct horse battery staple"; let mut rng = thread_rng(); let mut message = vec![0_u8; 64]; rng.fill_bytes(&mut message); let pwbox = PwBoxBuilder::<_, C>::new(&mut rng) .kdf(kdf) .seal(PASSWORD, &message) .unwrap(); assert_eq!(message.len(), pwbox.len()); assert_eq!(message, &*pwbox.open(PASSWORD).unwrap()); let mut buffer = [0_u8; 64]; // As [u8; 64] does not implement AsMut<[u8]> (the array length is larger than // the stopgap threshold 32), we need to index it explicitly. pwbox.open_into(&mut buffer[..], PASSWORD).unwrap(); assert_eq!(buffer[..], *message); }